Caixa de Ferramentas

A qualquer momento ao editar um cálculo ou expressão, pressione toolbox. Um catálogo de funções irá abrir-se para o ajudar a fazer cálculos mais específicos.

O catálogo da Caixa de ferramentas está dividido em várias sub-secções temáticas: Cálculo, Números complexos, Combinatória, … Escolha o cálculo que deseja efectuar e prima ok. Complete o espaço entre os parênteses com os argumentos que precisa para cada função.

As três primeiras funções do catálogo Caixa de ferramentas são Valor absoluto, raiz de índice n e Logaritmo na base a.

abs(x)

Calcula o valor absoluto do argumento que adicionar entre parênteses. abs(-4.5) dará o valor absoluto 4.5\mid -4.5\mid, que é 4.54.5.

root(x,n)

Calcula a raiz de índice nn de um número. Deve inserir nn e xx entre parênteses. root(x,n) dá o valor de xn\sqrt[n\,]{x}. O valor de nn não tem de ser um número inteiro.

log(x,a)

Calcula o logaritmo de base aa. Deve inserir aa e xx entre parênteses. log(x,a) dá o valor de loga(x)\log_{a}(x).

Cálculo

diff(f(x),x,a)

Calcula a derivada de uma função num ponto. diff(f(x),a) dá o valor de f(a)f'(a). Por exemplo, para calcular a derivada da raíz quadrada de 5: diff(sqrt(x),x,5).

int(f(x),x,a,b)

Calcula o integral de uma função entre dois limites. int(f(x),x,a,b) dá o valor de abf(x)dx\int_{a}^{b} f(x) \, \mathrm{d}x. Por exemplo, para calcular o integral da raíz quadrada entre 00 e 55: int(sqrt(x),x,0,5).

sum(f(i),i,m,n)

Calcula a soma dos termos em nn. sum(f(i),i,m,n) dá o valor de i=mnf(i)\sum_{i=m}^{n} f(i).

product(f(i),i,m,n)

Calcula o produto dos termos em nn. product(f(i),i,m,n) dá o valor de i=mnf(i)\prod_{i=m}^{n} f(i).

Números complexos

abs(x)

Valor absoluto de um número complexo. abs(2+3i) dá o valor de 2+3i\mid 2+3i\mid.

arg(z)

Argumento de um número complexo. arg(2+3i) dá o valor de arg(2+3i)arg(2+3i) em radianos.

re(z)

Parte real de um número complexo. Por exemplo, re(2+3i) devolve 22.

im(z)

Parte real de um número complexo. Por exemplo, im(2+3i) devolve 33.

conj(z)

Conjugado de dois números complexos. conj(2+3i) devolve o conjugado de 2+3i2+3i, que é 23i2-3i.

Probabilidades

Combinatória

binomial(n,k)

Combinações de nn elementos tomados kk a kk. Número de formas de escolher um subconjunto de kk elementos, desprezando a ordem, de um conjunto de nn elementos. binomial(n,k) devolve (nk)\dbinom{n}{k}, que é n!k!(nk)!\frac{n!}{k! (n-k)!}.

permute(n,k)

Arranjos sem repetição de nn elementos tomados kk a kk. Número de diferentes sequências que é possível formar com kk elementos, escolhidos de forma arbitrária de um conjunto de nn elementos. permute(n,k) devolve AnkA_{n}^k, que é n!(nk)!\frac{n!}{(n-k)!}.

n!

Calcula o fatorial de um número natural n.

Distribuições

Distribuição normal

normcdf(a,µ,σ)

Calcula P(X<a)P(X<a) onde X segue uma distribuição normal N(μ,σ)N(\mu,\sigma).

normcdf2(a,b,µ,σ)

Calcula P(a<X<b)P(a<X<b) onde X segue uma distribuição normal N(μ,σ)N(\mu,\sigma).

invnorm(a,µ,σ)

Devolve mm onde P(X<m)=aP(X<m)=a e X segue uma distribuição normal N(μ,σ)N(\mu,\sigma).

normpdf(x,µ,σ)

Densidade da probabilidade de N(μ,σ)N(\mu,\sigma).

Distribuição binomial

binompdf(m,n,p)

Calcula P(X=m)P(X=m) onde X segue uma distribuição binomial B(n,p)B(n,p).

binomcdf(m,n,p)

Calcula P(Xm)P(X \leq m) onde X segue uma distribuição binomial B(n,p)B(n,p).

invbinom(a,n,p)

Devolve mm onde P(Xm)=aP(X \leq m)=a e X segue uma distribuição binomial B(n,p)B(n,p).

Aleatório

random()

Gera um número aleatório entre 00 e 11.

randint(a,b)

Gera um número aleatório inteiro entre aa and bb.

Estatística

prediction95(p,n)

Calcula o intervalo de confiança para uma proporção pp, com nível de confiança de 95%. nn é a dimensão da amostra. prediction95(p,n) devolve [p1.96p(1p)n;p+1.96p(1p)n]\left[ p-1.96\frac{\sqrt{p(1-p)}}{\sqrt{n}};p+1.96\frac{\sqrt{p(1-p)}}{\sqrt{n}} \right].

prediction(p,n)

Aproximação do intervalo de previsão. prediction(p,n) devolve [p1n;p+1n]\left[ p-\frac{1}{\sqrt{n}};p+\frac{1}{\sqrt{n}} \right].

confidence(f,n)

Intervalo de confiança de 95%. confidence(f,n) devolve [f1n;f+1n]\left[ f-\frac{1}{\sqrt{n}};f+\frac{1}{\sqrt{n}} \right].

Unidade

Esta secção lista todas as unidades utilizáveis. Todas as unidades são prefixadas com o símbolo _.

Matrizes e vetores

[[1,2][3,4]]

Criar uma nova matriz.

transpose(M)

Calcula a transposição da matriz M. Por exemplo, transpose([[1,2][3,4]]) devolve [1324]\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \end{array}\right].

dim(M)

Devolve o tamanho da matriz M. Por exemplo, dim([[1,2][3,4]]) devolve [2,2].

Matrizes

det(M)

Calcula o determinante da matriz M. Por exemplo, det([[1,2][3,4]]) devolve 2-2.

inverse(M)

Calcula o inverso da matriz M, se existir. Por exemplo, inverse([[0.25,0][0,0.25]]) devolve [4004]\left[\begin{array}{cc}4 & 0 \\ 0 & 4 \end{array}\right].

identity(n)

Cria uma matriz identidade de ordem n.

trace(M)

Calcula o traço da matriz M. Por exemplo, trace([[1,2][3,4]]) devolve 55.

ref(M)

Devolve a forma escalonada da matriz M.

rref(M)

Devolve a forma escalonada reduzida da matriz M.

Vetores

Os vetores podem ser vetores de linha ou de coluna.

dot(u,v)

Calcula o produto escalar de dois vetores.

cross(u,v)

Calcula o produto vetorial de dois vetores de tamanho 3.

norm(u)

Calcula a norma euclidiana de um vetor.

Aritmética

gcd(p,q)

Calcula o máximo divisor comum de dois números inteiros. Por exemplo, gcd(55,11) devolve 1111. Esta função aceita mais de dois números inteiros no argumento.

lcm(p,q)

Calcula o mínimo múltiplo comum de dois números inteiros. Por exemplo, lcm(13,2) devolve 2626. Esta função aceita mais de dois números inteiros no argumento.

factor(n)

Calcula a decomposição em fatores primos de nn. Por exemplo, factor(24) devolve 23×32^3 \times 3.

rem(p,q)

Calcula o resto da divisão inteira pp by qq. Por exemplo, rem(50,45) devolve o resto da divisão de 5050 por 4545 que é 55.

quo(p,q)

Calcula o quoficiente da divisão inteira de pp por qq. Por exemplo, quo(80,39) devolve o quociente da divisão de 8080 por 3939 que é 22.

Trigonometria

Hiperbólica

sinh(x)

Seno hiperbólico.

cosh(x)

Cosseno hiperbólico.

tanh(x)

Tangente hiperbólica.

asinh(x)

Arco seno hiperbólico.

acosh(x)

Arco cosseno hiperbólico.

atanh(x)

Arco tangente hiperbólica.

Avançada

csc(x)

Cossecante.

sec(x)

Secante.

cot(x)

Cotangente.

acsc(x)

Arco cossecante.

asec(x)

Arco secante.

acot(x)

Arco cotangente.

Números decimais

floor(x)

Calcula a parte inteira de um número. Por exemplo, floor(5.8) devolve 55.

frac(x)

Calcula a parte fracionária de um número. Por exemplo, frac(5.8) devolve 0.80.8.

ceil(x)

Calcula a parte inteira por excesso de um número. Por exemplo, ceil(5.8) devolve 66.

round(x,n)

Arredonda um número para nn dígitos após a casa decimal. Por exemplo round(8.6576,2) devolve 8.668.66.