Toolbox

The toolbox key gives you access to an organized library of advanced functions. Press the toolbox key at any time while editing a calculation or expression to view a menu of functions. The advanced functions available in the toolbox menu change according to the application you are using.

When viewing a graph, the toolbox key gives you access to settings and additional features.

When writing an expression, the first functions in the Toolbox menu include: Absolute value, n-th root and Logarithm base a. When inputting expressions for the Grapher, the menu will also include Inequalities. Within the Sequences applicaiton, the Toolbox menu will also include defined sequences.

The Toolbox menu is then divided into several thematic sub-sections:

  • Calculus
  • Complex numbers
  • Probability
  • Units and constants
  • Matrices and vectors
  • Lists
  • Arithmetic
  • Trigonometry
  • Decimal numbers
  • Logic
abs(x)

Calculates the absolute value of the argument you enter in parentheses. abs(-4.5) gives the value of 4.5\mid -4.5\mid, that is 4.54.5.

root(x,n)

Calculates the nn-th root of a number. You must enter nn and xx in parentheses. root(x,n) gives the value of xn\sqrt[n\,]{x}. The value of nn doesn’t have to be an integer.

log(x,a)

Calculates the logarithm with base aa. You must enter aa and xx in parentheses. log(x,a) gives the value of loga(x)\log_{a}(x).

Calculus

diff(f(x),x,a)

Calculates the derivative of a function at a point. diff(f(x),x,a) gives the value of f(a)f'(a). For example, to calculate the derivative of a square root at 5: diff(sqrt(x),x,5).

diff(f(x),x,a,n)

Calculates the nth derivative of a function at a point. diff(f(x),x,a,n) gives the value of fn(a)f^{n}(a). For example, to calculate the 3rd derivative of a square root at 5: diff(sqrt(x),x,5,3).

int(f(x),x,a,b)

Calculates the integral of a function between two bounds. int(f(x),x,a,b) gives the value of abf(x)dx\int_{a}^{b} f(x) \, \mathrm{d}x. For example, to calculate the integral of the square root between 00 and 55: int(sqrt(x),x,0,5).

sum(f(n),n,nmin,nmax)

Calculates the sums of terms in nn. sum(f(n),n,nmin,nmax) gives the value of n=nminnmaxf(n)\sum_{n=n_{min}}^{n_{max}} f(n).

product(f(n),n,nmin,nmax)

Calculates the products of terms in nn. product(f(n),n,nmin,nmax) gives the value of n=nminnmaxf(n)\prod_{n=n_{min}}^{n_{max}} f(n).

Complex numbers

abs(x)

Modulus of a complex number. abs(2+3i) gives the value of 2+3i\mid 2+3i\mid.

arg(z)

Argument of a complex number. arg(2+3i) gives the value of arg(2+3i)arg(2+3i) in radians.

re(z)

Real part of a complex number. For example, re(2+3i) returns 22.

im(z)

Imaginary part of a complex number. For example, im(2+3i) returns 33.

conj(z)

Conjugate of a complex number. conj(2+3i) returns the conjugate of 2+3i2+3i, that is 23i2-3i.

Probability

Combinatorics

binomial(n,k)

Number of ways to choose a subset of size kk elements, disregarding their order, from a set of nn elements. For example, (nk)\dbinom{n}{k} returns n!k!(nk)!\frac{n!}{k! (n-k)!}.

permute(n,k)

Number of different ordered arrangements of a kk-element subset of an nn-set. permute(n,k) returns AnkA_{n}^k, that is n!(nk)!\frac{n!}{(n-k)!}.

n!

Returns the product of the entered integer and all integers below it. For example, 5!5! returns 120120.

Distributions

Normal

normcdf(a,µ,σ)

P(X<a)P(X<a) where X follows the normal distribution N(μ,σ)N(\mu,\sigma).

normcdfrange(a,b,µ,σ)

P(a<X<b)P(a<X<b) where X follows the normal distribution N(μ,σ)N(\mu,\sigma).

invnorm(a,µ,σ)

Returns mm where P(X<m)=aP(X<m)=a and X follows the normal distribution N(μ,σ)N(\mu,\sigma).

normpdf(x,µ,σ)

Probability density function of N(μ,σ)N(\mu,\sigma).

Student’s t

tcdf(a,k)

P(X<a)P(X<a) where X follows the t-distribution with k degress of freedom.

tcdfrange(a,b,k)

P(a<X<b)P(a<X<b) where X follows the t-distribution with k degress of freedom.

invt(a,k)

Returns mm where P(X<m)=aP(X<m)=a and X follows the t-distribution with k degress of freedom.

tpdf(x,k)

Probability density function of t(k)t(k).

Binomial

binompdf(m,n,p)

P(X=m)P(X=m) where X follows the binomial distribution B(n,p)B(n,p).

binomcdf(m,n,p)

P(Xm)P(X \leq m) where X follows the binomial distribution B(n,p)B(n,p).

invbinom(a,n,p)

Returns mm where P(Xm)=aP(X \leq m)=a and X follows the binomial distribution B(n,p)B(n,p).

Poisson

poissonpdf(m,λ)

P(X=m)P(X=m) where X follows the Poisson distribution with parameter λ.

poissoncdf(m,λ)

P(Xm)P(X \leq m) where X follows the Poisson distribution with parameter λ.

Geometric

geompdf(m,p)

P(X=m)P(X=m) where X follows the geometric distribution with probability p.

geomcdf(m,p)

P(Xm)P(X \leq m) where X follows the geometric distribution with probability p.

geomcdfrange(m,n,p)

P(mXn)P(m \leq X \leq n) where X follows the geometric distribution with probability p.

invgeom(a,p)

Returns mm where P(Xm)=aP(X \leq m)=a and X follows the geometric distribution with probability p.

Hypergeometric

hgeompdf(m,N,K,n)

P(X=m)P(X=m) where X follows the hypergeometric distribution with population size N, number of featured items K and sample size n.

hgeomcdf(m,N,K,n)

P(Xm)P(X \leq m) where X follows the hypergeometric distribution with population size N, number of featured items K and sample size n.

hgeomcdfrange(m,q,N,K,n)

P(mXn)P(m \leq X \leq n) where X follows the hypergeometric distribution with population size N, number of featured items K and sample size n.

invhgeom(a,N,K,n)

Returns mm where P(Xm)=aP(X \leq m)=a and X follows the hypergeometric distribution with population size N, number of featured items K and sample size n.

Random

random()

Returns a floating point number in [0,1).

randint(a,b)

Returns a random integer in [a,b].

randintnorep(a,b,n)

Returns n unique random integers in [a,b].

Units and constants

This menu contains sub-menus for constants and each type of measurement listed below. Units and constants can be selected from the menu or typed manually.

a→b

This menu item is a template that allows you to perform a unit conversion.

Length and angle

Length

Imperial
Abbreviation Unit
in Inch
ft Foot
yd Yard
mi Mile
au Astronomical unit
ly Light year
pc Parsec
Metric
Abbreviation Unit
pm Picometer
nm Nanometer
µm Micrometer
mm Millimeter
cm Centimeter
m Meter
km Kilometer

Angle

Abbreviation Unit
° Degree
°'" Degree minute second
rad Radian
gon Gradian

Time and frequency

Time

Abbreviation Unit
ns Nanosecond
µs Microsecond
ms Millisecond
s Second
min Minute
h Hour
day Day
week Week
month Month
year Year

Frequency

Abbreviation Unit
Hz Hertz
kHz Kilohertz
MHz Megahertz
GHz Gigahertz

Volume and area

Volume

Imperial
Abbreviation Unit
tsp Teaspoon
tbsp Tablespoon
floz Fluid ounce
cup Cup
pt Pint
qt Quart
gal Gallon
Metric
Abbreviation Unit
mL Milliliter
cL Centiliter
dL Deciliter
L Liter

Area

Imperial
Abbreviation Unit
acre Acre
Metric
Abbreviation Unit
ha Hectare

Mass

Imperial

Abbreviation Unit
oz Ounce
lb Pound
shtn Short ton
lgtn Long ton

Metric

Abbreviation Unit
µg Microgram
mg Milligram
g Gram
kg Kilogram
t Metric ton

Electricity

Current

Abbreviation Unit
µA Microampere
mA Milliampere
A Ampere

Voltage

Abbreviation Unit
µV Microvolt
mV Millivolt
V Volt
kV Kilovolt

Resistance

Abbreviation Unit
Ω Ohm
Kiloohm

Capacitance

Abbreviation Unit
µF Microfarad
mF Millifarad
F Farad

Others

Abbreviation Unit
H Henry
C Coulomb
S Siemens
T Tesla

Force and pressure

Force

Abbreviation Unit
mN Millinewton
N Newton
kN Kilonewton

Pressure

Abbreviation Unit
Pa Pascal
hPa Hectopascal
bar Bar
atm Atmosphere

Energy and power

Joule

Abbreviation Unit
mJ Millijoule
J Joule
kJ Kilojoule

Power

Abbreviation Unit
µW Microwatt
mW Milliwatt
W Watt
kW Kilowatt
MW Megawatt
GW Gigawatt

Electronvolt

Abbreviation Unit
meV Millielectronvolt
eV Electronvolt
keV Kiloelectronvolt
MeV Megaelectronvolt

Temperature

Abbreviation Unit
K Kelvin
°F Fahrenheit
°C Celsius

Others

Abbreviation Unit
cd Candela

Amount of substance

Abbreviation Unit
µmol Micromole
mmol Millimole
mol Mole

Constants

Abbreviation Unit
c Speed of light in a vacuum
e Elementary charge
G Gravitational constant
g0 Acceleration of gravity
k Boltzmann constant
ke Coulomb constant
me Mass of an electron
mn Mass of a neutron
mp Mass of a proton
Na Avogadro constant
R Molar gas constant
ε0 Vacuum permittivity
µ0 Vacuum permeability
hplanckx Planck permeability

Matrices and vectors

New matrix or vector

Create a new matrix or vector. This option creates a template. Enter your numbers using the directional keys.

transpose(M)

Transpose the matrix M. For instance, transpose([[1,2][3,4]]) returns [1324]\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \end{array}\right].

dim(M)

Size of the matrix M. For instance, dim([[1,2][3,4]]) returns [2,2].

Matrices

det(M)

Determinant of the matrix M. For instance, det([[1,2][3,4]]) returns 2-2.

inverse(M)

Inverse of the matrix M. For instance, inverse([[0.25,0][0,0.25]]) returns [4004]\left[\begin{array}{cc}4 & 0 \\ 0 & 4 \end{array}\right].

identity(n)

Identity matrix of size n.

trace(M)

Trace of the matrix M. For instance, trace([[1,2][3,4]]) returns 55.

ref(M)

Returns the scaled shape of matrix M.

rref(M)

Returns the scaled form of matrix M.

Vectors

Vectors can be row vectors or column vectors.

dot(U,V)

Calculates the dot product of two vectors.

cross(U,V)

Calculates the cross product of two vectors of size 3.

norm(U)

Calculates the magnitude of a vector.

Lists

New list

Create a new list. This option provides opening and closing curly braces. Enter your elements using the number keys with a comma to separate each element.

List of f(k) for k from 1 to n

Create a new list using a function. This option creates a template. Enter your function f(k) and your upper bound.

Statistics

mean(L)

Calculates the mean of L.

stddev(L)

Calculates the standard deviation of L.

samplestddev(L)

Calculates the sample standard deviation of L.

med(L)

Calculates the median of L.

var(L)

Calculates the variance of L.

Operations

dim(L)

Returns the length of L.

min(L)

Returns the minimum element of L.

max(L)

Returns the maximum element of L.

sort(L)

Sorts the elements of L in ascending order.

sum(L)

Calculates the sum of the elements of L.

prod(L)

Calculates the product of the elements of L.

Arithmetic

gcd(p,q)

Greatest Common Divisor of two integers. For instance, gcd(55,11) returns 1111. This function accepts more than two integers as arguments.

lcm(p,q)

Least Common Multiple of two integers. For instance, lcm(13,2) returns 2626. This function accepts more than two integers as arguments.

factor(n)

Integer factorization of nn. For instance, factor(24) returns 23×32^3 \times 3.

Mixed fraction

A template to input a mixed fraction.

rem(p,q)

Remainder of the Euclidian division of pp by qq. For instance, rem(50,45) returns the remainder of the division of 5050 by 4545 that is 55.

quo(p,q)

Quotient of the Euclidian division of pp by qq. For instance, quo(80,39) returns the quotient of the division of 8080 by 3939 that is 22.

Trigonometry

Hyperbolic

sinh(x)

Hyperbolic sine.

cosh(x)

Hyperbolic cosine.

tanh(x)

Hyperbolic tangent.

arsinh(x)

Inverse hyperbolic sine.

arcosh(x)

Inverse hyperbolic cosine.

artanh(x)

Inverse hyperbolic tangent.

Advanced

csc(x)

Cosecant

sec(x)

Secant

cot(x)

Cotangent

arccsc(x)

Arccosecant

arcsec(x)

Arcsecant

arccot(x)

Arccotangent

Decimal numbers

floor

Floor function. For instance, floor(5.8) returns 55.

frac(x)

Fractional part. For instance, frac(5.8) returns 0.80.8.

ceiling

Ceiling function. For instance, ceil(5.4) returns 66.

round(x,n)

Rounds a number to nn digits after the decimal point. For instance round(8.6576,2) returns 8.668.66.

Logic

piecewise(-x,x<0,x,x≥0

A piecewise template. Input an expression followed by its domain or conditions

Less than or equal to

Greater than or equal to

Different

and

And

or

Or (inclusive)

not

Not

xor

Or (exclusive)

nor

Not or (inclusive)

nand

Not and

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.